Infrared/XANES spectroscopy

R-O-P-OH

O-

Soil P species

DGT device
Combining Diffusive Gradients in Thin films (DGT) and Spectroscopic Techniques for the Determination of Phosphorus Species in Soils

Christian Vogel\(^1\)*, Ryo Sekine\(^2,3\), Daniel Steckenmesser\(^4\), Enzo Lombi\(^3\), Hannes Herzel\(^1\), Lucia Zuin\(^5\), Dongniu Wang\(^5\), Roberto Félix\(^6\) and Christian Adam\(^1\)

\(^1\) Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
\(^2\) Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
\(^3\) Future Industries Institute, University of South Australia, Building X, Mawson Lakes, SA 5095, Australia
\(^4\) Institute of Plant Nutrition, Research Center for Biosystems, Land Use and Nutrition, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
\(^5\) Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
\(^6\) Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

* Corresponding author: e-mail: cv.vogel@yahoo.de; phone: +49-30-8104-5679

Keywords:
Phosphorus plant-availability, X-ray adsorption near-edge structure (XANES) spectroscopy, infrared spectroscopy, Diffusive Gradients in Thin films (DGT)
Abstract:

A wide range of methods are used to estimate the plant-availability of soil phosphorus (P). Published research has shown that the diffusive gradients in thin films (DGT) technique has a superior correlation to plant-available P in soils compared to standard chemical extraction tests. In order to identify the plant-available soil P species, we combined DGT with infrared and P K- and L\textsubscript{2,3}-edge X-ray adsorption near-edge structure (XANES) spectroscopy. This was achieved by spectroscopically investigating the dried binding layer of DGT devices after soil deployment. All three spectroscopic methods were able to distinguish between different kinds of phosphates (poly-, trimeta-, pyro- and orthophosphate) on the DGT binding layer. However, infrared spectroscopy was most sensitive to distinguish between different types of adsorbed inorganic and organic phosphates. Furthermore, intermediates of the time-resolved hydrolysis of trimetaphosphate in soil could be analyzed.

1. Introduction

Phosphorus (P) is an essential element for all forms of life. It is necessary for the metabolic process (ADP/ATP) and it is an integral part of the DNA molecule and the cell membrane. Therefore, P is termed a macronutrient and is applied in the form of P-fertilizers in agriculture for crop production.

The plant-availability of soil P can strongly influence the yield of agricultural crops. Hence, several simple chemical extraction methods are used to estimate the plant-available P of soils [1,2]. More recently, several research groups [3-8] have shown that the Diffusive Gradients in Thin films (DGT) technique have a much better correlation to plant-available P in soils than standard chemical extraction tests (e.g. calcium-acetate-lactate (CAL), Colwell, Olsen, water) when soils with different characteristics are considered. The DGT device consists of a binding layer, a diffusion gel and a filter (to protect the gel) assembled in a
plastic holder [8,9]. The dissolved and labile P fraction of the soil from moist soil samples diffuses through the filter and diffusion gel and is subsequently adsorbed to the binding layer during deployment. The amount of adsorbed P on the binding layer, which is the quantity that accounts for the resupply from the solid phase over time, is then used as indicator for P plant-availability of the soil.

Six et al. [6] and Mason et al. [10] discovered by P33/P32 labelled P sources that the DGT method accessed the same pool of labile soil P as maize and wheat plants, while conventional P extraction tests also include non-available P pools in their measured quantity. Thus, the soil P compounds which are responsible for high yields of maize and wheat diffused and bound to the DGT binding layer.

The aim of our work was to identify the plant-available P compounds of soils by a novel combination of DGT and spectroscopic techniques. Our approach was to analyze the binding layers of DGT deployed in soils by Fourier Transform infrared (FTIR) spectroscopy, and by K-edge and L$_{2,3}$-edge X-ray adsorption near-edge structure (XANES) spectroscopies. Previously, other groups have shown that X-ray adsorption spectroscopy was able to distinguish between As(III) and As(V) compounds [11] and different mercury compounds [12], respectively, on the DGT binding layer. However, this combination has not been applied to examine highly plant-available P as detected by DGT. Here, we demonstrate the strengths of this approach by i) spectroscopically analyzing DGT deployed in various P solutions (as references), and ii) applying this to a time-resolved investigation of trimetaphosphate (TMP) hydrolysis, a polyphosphate with a high plant-availability [13,14], in incubated P-fertilizer/soil mixtures.

2. Materials and Methods

2.1 DGT experiments
DGT devices [8] (window size: 2.54 cm²; 0.8 mm APA (polyacrylamide) diffusion layer) with ferrihydrite (Fh; thickness 0.6 mm) and zirconium oxide (ZrO; thickness 0.4 mm) binding layer (DGT Research, Lancaster, UK), respectively, were loaded with 200 mL solutions (50 mg P/L) of various inorganic and organic P compounds (KH₂PO₄, D-glucose-6-phosphate disodium-salt (both Carl Roth, Karlsruhe, Germany), Ca(H₂PO₄)₂·H₂O (ABCR, Karlsruhe, Germany), (NH₄)₂HPO₄ (Merck, Darmstadt, Germany), Na₅P₃O₁₀·10H₂O, Na₅P₃O₁₀, (NaPO₃)₃, adenosine-5´-monophosphate Na-salt (AMP), adenosine-5´-diphosphate Na-salt (ADP), adenosine-5´-triphosphate Na-salt (ATP), adenosine-3´,5´-cyclic monophosphate Na-salt (cAMP), L-α-phosphatidylcholine, aminomethylphosphonic acid, β-glycerophosphate Na-salt and creatine phosphate (all Alfa Aesar, Karlsruhe, Germany) and phytic acid Na-salt (Sigma-Aldrich, Steinheim, Germany). The DGT devices were deployed for 24 h at 22°C in constantly agitated solutions. After deployment, the binding layers of the DGT devices were dried at room temperature and spectroscopically investigated as described below. Finally, P from the binding layer was eluted with 1 M HNO₃ (for Fh binding layers) or 1 M NaOH (ZrO binding layers) and the P concentration was analyzed by inductively coupled plasma - mass spectroscopy (ICP-MS; Thermo iCAP Q, Dreieich, Germany) to calculate the P mass accumulated to the binding layer.

Furthermore, time-resolved DGT measurements (Fh binding layer) were performed with trimetaphosphate (as sodium salt, (NaPO₃)₃) applied to a soil. Therefore, subsoil from a loess-derived brown soil was mixed with quartz sand at 1:1 mass ratio to decrease the P mass fraction (P_Total = 180 mg kg⁻¹, P_CAL = 10 mg kg⁻¹, pH in 0.01 M CaCl₂ = 6.7 of mixture). Sixty grams of soil/sand-mixture was mixed with 6 mg P of TMP (= 100 mg P per kg of soil, as in a previous pot experiment [7,15]) in 100 ml plastic containers. The soil was maintained daily at 60% of the water holding capacity (WHC) at 22°C. DGT was deployed for 24 h at four-time points: at the start of the incubation experiment (0 h) and after 6 hours, 2 and 7 days. Before DGT deployment the water content was increased to 100% WHC.
Additionally, soil samples from a pot experiment [15] with P-fertilizers with novel focus on recycled materials compared to triple super phosphate (TSP) were analyzed. The recycled P materials included sewage sludge from a waste water treatment plant with enhanced biological phosphorus removal (B\textsubscript{bio}); and sewage sludge precipitated with FeCl\textsubscript{2} and post-treated with sodium sulfate under reducing conditions (B\textsubscript{chem}+Na). These soil samples were taken after the growth experiment. Previous research of these soils showed P DGT results with a superior correlation to the P uptake by maize in the pot experiment [15]. After a 24 h conditioning period of the soils at 60% of the WHC, they were brought to 100% WHC, transferred onto the DGT devices (Fh and ZrO binding layer) and deployed for 24, 48 and 72 h, respectively, at 22°C.

The binding layers from the DGT experiments with the soils from the pot experiment and with the TMP/soil mixture were dried at room temperature and spectroscopically investigated, followed by P extraction with 1 M HNO\textsubscript{3} (Fh) and 1 M NaOH (ZrO), respectively (see above).

2.2 Infrared spectroscopy

Fourier-transform infrared (FT-IR) spectra of the dried DGT binding layers were collected with a Bruker Alpha FT-IR spectrometer (Ettlingen, Germany) with a DTGS detector. The Fh binding layers were measured in transmission mode (spectral resolution 8 cm-1; 32 scans were coadded per spectrum) in a compression cell with diamond windows (Micro Compression Cell II, Thermo Fisher Scientific, Madison, USA). The ZrO binding layers were measured with the eco-attenuated total reflection (ATR) module. The infrared spectra were normalized (Min-Max to 1495-1382 cm-1 region) and the peak positions and second derivative analyzed with the software OPUS (Bruker, version 7.0).

2.3 P K-edge XANES spectroscopy
P K-edge XANES measurements of dried DGT Fh binding layers were carried out in the High Kinetic Energy Photoelectron Spectrometer (HIKE) endstation [16] located at the BESSY II KMC-1 beamline [17] at Helmholtz-Zentrum Berlin (HZB). The ring was operated in top-up mode at a current of 280 mA. The beamline uses a Si (111) double-crystal monochromator. P K-edge XANES spectra were measured in fluorescence mode using a silicon drift detector XFlash® 4010 (Bruker, Berlin, Germany) from 2130 eV to 2200 eV in steps of 0.25 eV at room temperature. The data was analyzed using the freeware Demeter Athena (version 0.9.24) [18]. The spectra were background corrected using a linear regression fit through the pre-edge region [−18 to −8 eV relative to E_0] and a polynomial regression fit through the post-edge region [E_0+30 to $+47$ eV].

2.4 P L$_{2,3}$-edge XANES spectroscopy

P L$_{2,3}$-edge XANES analysis of dried DGT Fh binding layers were carried out at the Variable Line Spacing Plane Grating Monochromator (VLS-PGM) beamline [19] at the Canadian Light Source. The electron storage ring was operated in decay mode with a current range of 220-170 mA. All spectra were recorded at room temperature in the energy range from 130 to 155 eV, with a step size of 0.1 eV and a dwell time of 4 s or 16 s. The entrance and exit slits were set to 200 µm. The spectra were collected in total fluorescence yield mode (FLY), using a microchannel plate detector [20] and were normalized with respect to the incident photon flux (I_0). I_0 was simultaneously recorded with the FLY by monitoring the drain current emitted from a Nickel mesh (90% transmission) located in front of the samples. The data were also analyzed using the freeware Demeter Athena (version 0.9.24) [18].

3. Results and discussion

3.1 DGT (Fh) of P-solutions
Table 1 shows the P mass accumulated to the Fh binding layer of DGT deployed in solutions containing various P compounds (also relative to KH$_2$PO$_4$ (=100%)). The inorganic ortho-, pyro- and polyphosphates show relatively high P adsorption values, best for Ca(H$_2$PO$_4$)$_2$ and Na$_4$P$_2$O$_7$. In contrast, the values of most organic P compounds (except ADP, ATP and aminomethylphosphonic acid) are much lower, especially for phytic acid and L-α-phosphatidylcholine. This agrees with results of Van Moorleghem et al. [21] and illustrates that the diffusion coefficient for the high molecular weight organic P compounds is lower than for inorganic species. Mohr et al. [22] experimentally determined the diffusion coefficient for AMP (2.9 × 10$^{-6}$ cm2 s$^{-1}$; 20°C) and phytic acid (1.0 × 10$^{-6}$ cm2 s$^{-1}$; 20°C), which is significantly lower than for orthophosphate (5.27 × 10$^{-6}$ cm2 s$^{-1}$; 20°C). Afterwards, these binding layers were used as references for the spectroscopic measurements.

3.2 Spectroscopy of DGT (Fh) binding layers exposed to various P species

Figure 1 shows the normalized FT-IR spectra of the pure Fh binding layer and from the DGT deployed with different P species. In contrast to the blank, the P loaded binding layers show additional absorption bands between 1300 cm$^{-1}$ and 850 cm$^{-1}$. After subtraction of the pure Fh binding layer spectrum, the absorption bands of the different P compounds adsorbed to the Fh binding layer become clearly visible (Fig. 2 – spectra and second derivative). The orthophosphates show two absorption bands of the P-O stretching vibrations ca. 1100 cm$^{-1}$ and 1000 cm$^{-1}$. This is in agreement to previous studies on sorption of phosphates onto ferrihydrite [23-25]. The pyrophosphate (Na$_4$P$_2$O$_7$) shows two additional bands at ca. 1160 cm$^{-1}$ and 910 cm$^{-1}$, the tripolyphosphate (Na$_5$P$_3$O$_{10}$) at around 1220 cm$^{-1}$, 1160 cm$^{-1}$ and 910 cm$^{-1}$ and TMP ((NaPO$_3$)$_3$) at around 1270 cm$^{-1}$, 1160 cm$^{-1}$ and a small band ca. 910 cm$^{-1}$. The band at around 910 cm$^{-1}$ is the P-O-P stretching vibration of the condensed phosphates, the band at around 1160 cm$^{-1}$ belongs to the stretching vibration of the PO$_3$-group and the bands at 1220 cm$^{-1}$ and 1270 cm$^{-1}$ are the stretching vibrations of the
bridging PO$_2$ [26,27]. The bridging PO$_2$ stretching vibrations occur for polyphosphates \geq P$_3$ only and the frequency of the band is chain length dependent [26].

Additionally, the P K-edge XANES spectra of the Fh binding layers from the DGT experiments with different P solutions were measured. The XANES spectra of the analyzed P standards are very similar (see Fig. 3 top left) and show adsorbed P. A limitation of the P K-edge XANES technique is the inability to reliably distinguish among different phosphate adsorption complexes which result in identical XANES spectra [28]. Furthermore, most iron-P compounds show a minor pre-peak [29], which is not detectable for the Fh binding layers from the DGT experiment. This is probably because of the adsorption complex with Fe, which has only a slight pre-edge feature [28]. However, the zoomed-in edge region and the first derivate of these spectra (Fig. 3 top, middle and right, respectively) show a little shift of the K-edge inflection point ($(\text{NaPO}_3)_3$: 2152.5 eV; Na$_4$P$_2$O$_7$: 2152.75 eV; and KH$_2$PO$_4$: 2153.0 eV). It should be noted that this spectral shift of 0.25 eV is almost similar to the spectral resolution of the beamline (0.2 eV). Thus, FT-IR spectroscopy is much more sensitive to distinguish among different kinds of phosphates absorbed to the Fh binding layer than P K-edge XANES spectroscopy.

In contrast, P L$_{2,3}$-edge XANES spectroscopy provides better resolved spectral features than P K-edge XANES spectroscopy [30]. The features of the P L$_{2,3}$-edge XANES spectra of the Fh binding layers from the DGT experiments with different P solutions come close to the applied poly- and pyrophosphate but with less intensity and are more blurred (see spectra in Fig. 4). The polyphosphate TMP (DGT-(NaPO$_3$)$_3$) shows two shoulders at around 136.1 eV and 137.1 eV and the pyrophosphate (DGT-Na$_4$P$_2$O$_7$) two shoulders at ca. 136.5 eV and 137.5 eV. In contrast, the orthophosphate (DGT-KH$_2$PO$_4$) absorbed on the DGT Fh binding layer shows no obvious shoulders in the L$_{2,3}$-edge possibly due to more disordered structure compared to standards. Only a slight pre-peak at 136-137 eV was detectable which is characteristic for orthophosphate adsorbed to ferrihydrite [31]. All these phosphates show
characteristic features which could be clearly distinguished from each other. However, it is worth to mention that the sensitivity (fluorescence yields) is much lower for P L_{2,3}-edge XANES spectroscopy than for P K-edge XANES spectroscopy, thereby, only Fh binding layers with >43 µg of accumulated P could be analyzed with this technique.

Finally, various organic P compounds on the Fh binding layers were also analyzed by FT-IR spectroscopy (see Fig. S1 and Table 2). The organic orthophosphate monoesters show the P-O stretching vibrations bands around 1080 cm\(^{-1}\) and 980 cm\(^{-1}\) and the PO\(_3\) stretching vibration at 1160 cm\(^{-1}\) in the FT-IR spectra. In comparison to the inorganic orthophosphates the P-O stretching vibrations are shifted (approx. 20 cm\(^{-1}\)) to lower wavenumbers. However, it is not possible to differentiate between the different organic orthophosphate monoesters due to the very similar bonding of the phosphate group (R-O-PO\(_3\)). In contrast, the organic pyro- and polyphosphate monoesters ADP and ATP show, similarly to the inorganic pyro-/polyphosphates, the P-O-P stretching vibration (926 and 915 cm\(^{-1}\), respectively) and the stretching vibrations of the bridging PO\(_2\) (1216 and 1234 cm\(^{-1}\), respectively) (see Fig. S1; Table 2). ADP shows the bridging PO\(_2\) band, in contrast to the inorganic pyrophosphate, because of the ester bond to the carbon (R-O-PO\(_2\)-O-PO\(_3\)). Furthermore, this bridging PO\(_2\) band is also detectable for the orthophosphate diesters cAMP (cyclic) and L-\(\alpha\)-phosphatidylcholine (linear), respectively, (R-O-PO\(_2\)-O-R bond; 1238 cm\(^{-1}\) and 1265 cm\(^{-1}\)). Additionally, these orthophosphate diesters show also a band at ca. 850 cm\(^{-1}\). Moreover, the phosphonates aminomethylphosphonic acid and creatine phosphate show three absorption bands very similar to the orthophosphate monoesters due to the P-O and PO\(_3\)-group stretching vibrations of the R-PO\(_3\)-group.

3.3 Incubated TMP/soil-mixtures

Figure 5 shows the FT-IR spectra and second derivative of the Fh binding layers from DGT experiments with the incubated TMP/soil-mixtures. At the start of the experiment
absorption bands of ortho-, pyro- and polyphosphates were detected (0 min). Surprisingly, the absorption band of added TMP at 1270 cm\(^{-1}\) is not visible. After 6 h of incubation an almost similar spectrum was observed, but after 2 days of incubation the polyphosphate band at around 1220 cm\(^{-1}\) is no longer detectable, while the pyrophosphate bands at \(ca.\ 1160\ \text{cm}^{-1}\) and 910 cm\(^{-1}\) are still observed. Finally, seven days of incubation led to an almost complete hydrolysis of TMP in the soil to orthophosphates and/or orthophosphate monoesters.

Additionally, P K-edge XANES spectra of the Fh binding layers from the DGT experiments with incubated TMP/soil-mixture were measured (see Fig. 3 bottom). Similar to the XANES spectra of the P standards (Fig. 3 top) the XANES spectra from the incubated TMP/soil-mixture are also very similar. The zoomed-in edge (Fig. 3 bottom middle) and first derivate of these XANES spectra (Fig. 3 bottom right) displays a shift of the edge to higher energy from the beginning of the experiment (0 min. and 6 h) to two and seven days of incubation. These results support the FT-IR data, and together they indicate that TMP is first hydrolyzed in the soil over time to a linear polyphosphate and then to pyro- and orthophosphates, which is in agreement with previous literature [32-34].

The P mass accumulated on the binding layer for the incubation experiment with TMP (see Fig. 5) is very high (40-35 µg P; maximum approx. 58 µg) at the beginning (first day) and rapidly decreased after two days of incubation (9 µg P). However, these amounts of accumulated P on the binding layer were still below the detection limit for P L\(_{2,3}\)-edge XANES spectroscopy. Based on the FT-IR results of the TMP incubation time series, it is likely that the plant-available P in the incubated TMP/soil-mixture is also decreasing. Previously, Torres-Dorrante et al. [35] showed that the polyphosphate concentration in the soil solution of incubated TMP/soil-mixtures dropped rapidly in the first few days, which is consistent with our findings. Blanchar and Hossner [32] found that TMP, in contrast to other phosphates has a lower sorption rate in soil. Thus, TMP stays in the soil solution and can be easily accessed by DGT. After hydrolysis of the TMP, the orthophosphates can be absorbed to
the soil. This, together with the ageing process of the phosphate, might be an explanation for the high value of accumulated P on the binding layer at the beginning and the decrease after two days of incubation. These experiments were also done with a reduced deployment time for the DGT devices of 3 h (see Fig. S2 in supporting information). However, the results obtained were similar to the 24 h deployment.

3.4 Use of different DGT binding layers

The DGT Fh binding layer can adsorb only up to approximately 58 µg of P and larger amounts of P in fertilizer/soil-mixtures could possibly saturate the binding layer. Therefore, binding layers with higher capacities may be used, such as titanium oxide (TiO$_2$) [36] or zirconium oxide (ZrO) [37]. DGT experiments showed that the dried TiO$_2$ binding layers were impossible to analyze by FT-IR spectroscopy because after drying they became stiff and fragile and could not be pressed in the diamond compression cell. The ZrO binding layers were also a bit fragile after drying, but remained sufficiently intact to allow for their analysis by ATR/FT-IR spectroscopy.

Figure 6 shows a comparison of the normalized FT-IR spectra of DGT experiments with ZrO and Fh binding layers, respectively, with different P solutions. In contrast to the Fh binding layer much stronger adsorption bands were detected due to the higher capacity of the ZrO binding layer. Small, adsorbent-dependent shifts in the IR absorption frequencies can be expected since the adsorption process would alter the bond strengths of adsorbing groups (e.g. P-O), similar to the differences observed between pure vs Fh-adsorbed phosphates.

3.5 DGT of soils from pot experiment

Soil from a pot experiment with triple superphosphate [15] was analyzed with different deployment times of the DGT devices (ZrO binding layer). The ATR/FT-IR spectra showed that for all deployment times (24, 48 and 72 h) orthophosphates were adsorbed onto
the ZrO binding layer (see Fig. S3 in the Supporting Information). It is also clear that longer deployment times lead to stronger orthophosphate absorption bands as the adsorbed amount increases.

Analysis of this and other soils from a pot experiment by DGT showed bands from orthophosphates (around 1100 and 1000 cm\(^{-1}\), respectively) and organic orthophosphate monoester (additional band at approx. 1160 cm\(^{-1}\)) only on the DGT binding layers (ZrO and Fh; see Fig. S4 and S5, respectively). Notably, the absorption band at 1160 cm\(^{-1}\) was also detected for the untreated soil (see Fig. S3 top). Therefore, the orthophosphates appear to originate only from the applied fertilizers. However, the presence of the organic orthophosphate monoester on the binding layer shows that the use of the single orthophosphate diffusion coefficient, as is conventionally used, may not be strictly correct in analyzing DGT P. In this case, (semi-)quantitative P speciation information on the binding layer as demonstrated in this study has the potential to improve the P plant-availability investigations of DGT by allowing the use of multiple diffusion coefficients from the multiple detectable P species.

4. Conclusions

In this paper, we showed the potential for the combination of the DGT technique with spectroscopic methods. Different kinds of phosphates in solutions and soils can be distinguished on the DGT binding layer by infrared and P K- and L\(_{2,3}\)-edge XANES spectroscopy, respectively (see a summary of all analyzed samples in table S1). However, various orthophosphates adsorbed to the binding layer show very similar FT-IR and XANES spectra, respectively. The organic orthophosphate monoesters also show very similar FT-IR adsorption bands. For the here investigated sample series, the infrared spectra show comparatively more features and thus more information about the adsorbed inorganic and
organic P-species. Additionally, infrared microspectroscopy [38] make it also possible to analyze P compounds on the binding layer with a lateral resolution down to 5 µm². Therefore, P species of a spatial soil segment (e.g. rhizosphere) [39] can be mapped and analyzed. Analysis of P hotspots from soil segments could possibly also be done by P L₂,₃-edge XANES microspectroscopy [40] which will be available from autumn of 2019 at the Canadian Light Source. Furthermore, the hydrolysis of TMP in soil shows a further benefit of this combination. Intermediates of the time-resolved hydrolysis were absorbed on the DGT binding layer and could be analyzed afterwards.

Acknowledgments:
CV and DS thank the German Federal Ministry for Food and Agriculture for financial support (2811NA022/2811NA023). CV thanks the German Research Foundation (VO 1794/4-1) for financial support. Collaboration between BAM (CV, CA) and the University of South Australia (RS, EL) was supported by the Australian Technology Network – DAAD Researcher Exchange Scheme (2014). RF acknowledges financial support by the Impuls- und Vernetzungsfonds of the Helmholtz-Association (VH-NG-423). Research described in this paper was performed at the Canadian Light Source, which is supported by the Canada Foundation for Innovation, Natural Sciences and Engineering Research Council of Canada, the University of Saskatchewan, the Government of Saskatchewan, Western Economic Diversification Canada, the National Research Council Canada, and the Canadian Institutes of Health Research. We thank HZB for the allocation of synchrotron radiation beamtime.
References

Table and Figure Caption:

Table 1: DGT-measurable P over 24 h to the Fh binding layer of DGT devices from P-solutions (50 mg P/L) of various P compounds

Table 2: Detected IR absorption bands (cm\(^{-1}\)) of various inorganic and organic P compounds adsorbed to the Fh binding layer. (\(v =\) stretching vibration)

Figure 1: FT-IR spectra of Fh binding layers from DGT experiments with solutions of different phosphates

Figure 2: Blank subtracted FT-IR spectra (left) and second derivative (right) of Fh binding layers from DGT experiments with solutions of different inorganic phosphates

Figure 3: P K-edge XANES spectra of Fh binding layers from DGT experiments with solutions of different phosphates (top left) and time-resolved incubated TMP in soil (below left), zoomed in edge-region (middle) and their first derivative of the related edge region (right); the vertical lines show the edge and first derivative of the edge for the polyphosphate (blue), pyrophosphate (green) and orthophosphate (red).

Figure 4: P L\(_{2,3}\)-edge XANES spectra of Fh binding layers from DGT experiments with solutions of different phosphates in comparison to spectra of the applied phosphates

Figure 5: Blank subtracted FT-IR spectra (left) and second derivative (right) of Fh binding layers from DGT experiments of time-resolved incubated TMP in soil

Figure 6: Comparison between FT-IR spectra of ZrO (black) and Fh (red) binding layers from DGT experiments with solutions of different phosphates
Table 1:

<table>
<thead>
<tr>
<th>Phosphate Type</th>
<th>Molecular Weight</th>
<th>P Mass Accumulated to Binding Layer</th>
<th>Accumulated P Relative to KH$_2$PO$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH$_2$PO$_4$ orthophosphate</td>
<td>136 g/mol</td>
<td>58.5 ± 0.4 µg</td>
<td>100% ± 1%</td>
</tr>
<tr>
<td>Ca(H$_2$PO$_4$)$_2$ orthophosphate</td>
<td>252 g/mol</td>
<td>58.5 ± 4.7 µg</td>
<td>100% ± 8%</td>
</tr>
<tr>
<td>Na$_4$P$_2$O$_7$ pyrophosphate</td>
<td>266 g/mol</td>
<td>49.7 ± 5.3 µg</td>
<td>85% ± 9%</td>
</tr>
<tr>
<td>Na$_5$P3O${10}$ polyphosphate</td>
<td>368 g/mol</td>
<td>34.5 ± 0.6 µg</td>
<td>59% ± 1%</td>
</tr>
<tr>
<td>(NaPO$_3$)$_3$ polyphosphate</td>
<td>306 g/mol</td>
<td>43.3 ± 4.7 µg</td>
<td>74% ± 8%</td>
</tr>
<tr>
<td>β-Glycero phosphate orthophosphate monoester</td>
<td>216 g/mol</td>
<td>29.8 ± 2.9 µg</td>
<td>51% ± 5%</td>
</tr>
<tr>
<td>Phytic acid orthophosphate monoester</td>
<td>660 g/mol</td>
<td>6.4 ± 0.6 µg</td>
<td>11% ± 1%</td>
</tr>
<tr>
<td>Glucose-6-phosphate orthophosphate monoester</td>
<td>308 g/mol</td>
<td>29.3 ± 4.7 µg</td>
<td>50% ± 8%</td>
</tr>
<tr>
<td>AMP orthophosphate monoester</td>
<td>391 g/mol</td>
<td>31.6 ± 0.6 µg</td>
<td>54% ± 1%</td>
</tr>
<tr>
<td>ADP pyrophosphate monoester</td>
<td>471 g/mol</td>
<td>48.6 ± 1.2 µg</td>
<td>83% ± 2%</td>
</tr>
<tr>
<td>ATP polyphosphate monoester</td>
<td>533 g/mol</td>
<td>69.6 ± 0.8 µg</td>
<td>119% ± 2%</td>
</tr>
<tr>
<td>cAMP cyclic phosphate diester</td>
<td>351 g/mol</td>
<td>10.5 ± 4.1 µg</td>
<td>18% ± 7%</td>
</tr>
<tr>
<td>L-α-Phosphatidylcholine phosphate diester</td>
<td>644 g/mol</td>
<td>2.9 ± 0.5 µg</td>
<td>5% ± 1%</td>
</tr>
<tr>
<td>Aminomethylphosphonic acid phosphonate</td>
<td>111 g/mol</td>
<td>47.4 ± 1.2 µg</td>
<td>81% ± 2%</td>
</tr>
<tr>
<td>Creatine phosphate phosphonate</td>
<td>263 g/mol</td>
<td>23.4 ± 2.3 µg</td>
<td>40% ± 4%</td>
</tr>
</tbody>
</table>
Table 2:

<table>
<thead>
<tr>
<th>Compound</th>
<th>νPO₂ bridging</th>
<th>νPO₃</th>
<th>ν₁P-O</th>
<th>ν₂P-O</th>
<th>ν(P-O-P) diester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorg. orthophosphate</td>
<td>1159</td>
<td>1087</td>
<td>1000</td>
<td>1019</td>
<td>910</td>
</tr>
<tr>
<td>Inorg. pyrophosphate</td>
<td>1161</td>
<td>1084</td>
<td>978</td>
<td>906</td>
<td></td>
</tr>
<tr>
<td>Inorg. tripolyphosphate</td>
<td>1220</td>
<td>1158</td>
<td>1087</td>
<td>988</td>
<td>903</td>
</tr>
<tr>
<td>Inorg. trimetaphosphate</td>
<td>1270</td>
<td>1153</td>
<td>1079</td>
<td>981</td>
<td></td>
</tr>
<tr>
<td>AMP</td>
<td>1153</td>
<td>1079</td>
<td>981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cAMP</td>
<td>1238</td>
<td>1159</td>
<td>1068</td>
<td>1010</td>
<td>909 849</td>
</tr>
<tr>
<td>ADP</td>
<td>1216</td>
<td>1161</td>
<td>1088</td>
<td>1001</td>
<td>926</td>
</tr>
<tr>
<td>ATP</td>
<td>1234</td>
<td>1164</td>
<td>1087</td>
<td>989</td>
<td>915</td>
</tr>
<tr>
<td>β-Glycero phosphate</td>
<td>1155</td>
<td>1070</td>
<td>976</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytic acid</td>
<td>1166</td>
<td>1070</td>
<td>984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose-6-phosphate</td>
<td>1153</td>
<td>1082</td>
<td>981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-α-Phosphatidylcholine</td>
<td>1267</td>
<td>1160</td>
<td>1003</td>
<td>854</td>
<td></td>
</tr>
<tr>
<td>Aminomethylphosphonic acid</td>
<td>1132</td>
<td>1053</td>
<td>985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatine phosphate</td>
<td>1158</td>
<td>1095</td>
<td>979</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Highlights:

- Combination of DGT and spectroscopic techniques determines plant-available phosphorus species in soils
- Intermediates of time-resolved soil phosphorus reactions can be analyzed
- Spectroscopic mapping techniques can detect phosphorus species of a spatial soil segment
Declarations of interest: none