Lipid constituents of the edible mushroom, Pleurotus giganteus demonstrate anti-candida activity

Phan, Chia-Wei; Lee, Guan-Sern; Macreadie, Ian; Malek, Sri Nurestri Abd; Pamela, David; Sabaratnam, Vikineswary

Document version: Published Version

Repository homepage: https://researchrepository.rmit.edu.au
Downloaded On 2023/11/01 22:19:08 +1100
Thank you for downloading this document from the RMIT Research Repository.

The RMIT Research Repository is an open access database showcasing the research outputs of RMIT University researchers.

RMIT Research Repository
http://researchbank.rmit.edu.au/

Citation:

See this record in the RMIT Research Repository at:

Version: Published Version

Copyright Statement: © N/A

Link to Published Version:

http://www.naturalproduct.us/content/npc-8-12-2013.pdf

PLEASE DO NOT REMOVE THIS PAGE
NATURAL PRODUCT COMMUNICATIONS

An International Journal for Communications and Reviews Covering all Aspects of Natural Products Research

SYNTHESIS
ANALYTICAL
BIO-TECHNOLOGY
BIODIVERSITY
BIOSYNTHESIS
BIOACTIVITY & SAR
PHARMACOLOGY
MOLECULAR STRUCTURE
CHEMICAL ECOLOGY

ISSN 1934-578X (printed); ISSN 1555-9475 (online)
www.naturalproduct.us
EDITOR-IN-CHIEF
DR. Pawan K. Agarwal
Natural Product Inc.
7963, Anderson Park Lane,
Westerville, Ohio 43081, USA
agarwal@naturalproduct.us

EDITORS
PROFESSOR ALEJANDRO F. BARRERO
Department of Organic Chemistry,
University of Granada,
Campus de Fuente Nueva, s/n, 18071, Granada, Spain
afbarre@ugr.es

PROFESSOR ALESSANDRA BRACA
Dipartimento di Chimica Bioorganica e Biofarmacia,
Università di Pisa,
via Bonanno 33, 56126 Pisa, Italy
braca@farm.unipi.it

PROFESSOR DEAN GUO
State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences,
Peking University,
Beijing 100083, China
gda5958@163.com

PROFESSOR YOSHIHIRO MIMAKI
School of Pharmacy,
Tokyo University of Pharmacy and Life Sciences,
Hortensu 1432-1, Hachioji, Tokyo 192-0392, Japan
mimakiy@ps.toyaku.ac.jp

PROFESSOR STEPHEN G. PYNE
Department of Chemistry,
University of Wollongong,
Wollongong, New South Wales, 2522, Australia
spyne@uow.edu.au

PROFESSOR MANFRED G. REINECKE
Department of Chemistry,
Texas Christian University,
Fort Worth, TX 76129, USA
m.reinecke@tcu.edu

PROFESSOR WILLIAM N. SETZER
Department of Chemistry
The University of Alabama in Huntsville
Huntsville, AL 35809, USA
wsetzer@chemistry.uah.edu

PROFESSOR YASUHIRO TEZUKA
Institute of Natural Medicine
Institute of Natural Medicine, University of Toyama,
2630-Sugitani, Toyama 930-0194, Japan
tezuka@inn-u.toyama.ac.jp

PROFESSOR DAVID E. THURSTON
Department of Pharmaceutical and Biological Chemistry,
The School of Pharmacy,
University of London, 29-39 Brunswick Square,
London WC1N 1AX, UK
david.thurston@pharmacy.ac.uk

HONORARY EDITOR
PROFESSOR GERALD BLUNDEN
The School of Pharmacy & Biomedical Sciences,
University of Portsmouth,
Portsmouth, PO1 2DU, U.K.
aagf64@dsl.pipex.com

ADVISORY BOARD
Prof. Berhanu M. Abegaz
Gaborone, Botswana
Prof. Karsten Krohn
Paderborn, Germany

Prof. Viqar Uddin Ahmad
Karachi, Pakistan
Prof. Chiaki Kuroda
Tokyo, Japan

Prof. Øyvind M. Andersen
Bergen, Norway
Prof. Hartmut Laatsch
Göttingen, Germany

Prof. Giovanni Appendino
Novara, Italy
Prof. Marie Lacaille-Dubois
Dijon, France

Prof. Yoshinori Asakawa
Tokushima, Japan
Prof. Sho-Tsung Lee
Taipei, Taiwan

Prof. Lee Banting
Portsmouth, U.K.
Prof. Francisco Macias
Cadiz, Spain

Prof. Julie Banerji
Kolkata, India
Prof. Imre Mathe
Szeged, Hungary

Prof. Anna R. Bilia
Florence, Italy
Prof. Erminio Murano
Trieste, Italy

Prof. Maurizio Bruno
Palermo, Italy
Prof. M. Soledade C. Pedras
Saskatoon, Canada

Prof. César A. N. Catalan
Tucuman, Argentina
Prof. Luci Pieters
Antwerp, Belgium

Prof. Josep Coll
Barcelona, Spain
Prof. Peter Proksch
Düsseldorf, Germany

Prof. Geoffrey Cordell
Chicago, IL, USA
Prof. Phila Raharivelomanana
Tahiti, French Polynesia

Prof. Ana Cristina Figueiredo
Lisbon, Portugal
Prof. Luca Rastrelli
Fisciano, Italy

Prof. Cristina Gracia-Viguera
Murcia, Spain
Prof. Monique Simmonds
Richmond, UK

Prof. Duvvuru Gunasekar
Tirupati, India
Dr. Bikram Singh
Palampur, India

Prof. Kurt Hostettmann
Lausanne, Switzerland
Prof. John L. Sorensen
Minotoba, Canada

Prof. Martin A. Iglesias Arteaga
Mexico, D. F., Mexico
Prof. Valentin Stonik
Vladivostok, Russia

Prof. Leopold Irovetz
Vienna, Austria
Prof. Winston F. Tinto
Burbadu, West Indies

Prof. Vladimir I Kalinin
Vladivostok, Russia
Prof. Sylvia Urban
Melbourne, Australia

Prof. Duvvuru Gunasekar
Tirupati, India
Prof. Karen Valant-Vetschera
Vienna, Austria

INFORMATION FOR AUTHORS
Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2013 subscription price: US$2,395 (Print, ISSN® 1934-578X); US$2,395 (Web edition, ISSN® 1555-9475); US$2,795 (Print + single site online); US$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Different solvent extracts of *Pleurotus giganteus* fruiting bodies were tested for antifungal activities against *Candida* species responsible for human infections. The lipids extracted from the ethyl acetate fraction significantly inhibited the growth of all the *Candida* species tested. Analysis by GC/MS revealed lipid components such as fatty acids, fatty acid methyl esters, ergosterol, and ergosterol derivatives. The sample with high amounts of fatty acid methyl esters was the most effective antifungal agent. The samples were not cytotoxic to a mammalian cell line, mouse embryonic fibroblasts BALB/c 3T3 clone A31. To our knowledge, this is the first report of antifungal activity of the lipid components of *Pleurotus giganteus* against *Candida* species.

Keywords: *Pleurotus giganteus*, *Candida*, yeast, Antifungal, Medicinal mushroom, Fatty acid, Fatty ester methyl ester, Ergosterol.

Table 1: Activity of different extracts of *Pleurotus giganteus* against *Candida* species.

<table>
<thead>
<tr>
<th>Candida strains</th>
<th>Untreated</th>
<th>Solvent extracts (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Methanol</td>
</tr>
<tr>
<td>Candida albicans WM1172</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida albicans ATCC90028</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida dubliniensis</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida glabrata CBS138</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida glabrata ATCC90030</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida krusei ATCC6258</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida pseudotropicalis</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>Candida tropicalis WM30</td>
<td>++++</td>
<td>++++</td>
</tr>
</tbody>
</table>

Strains were grown with different mushroom extracts at the concentrations shown for two days on YEPD media. Growth was scored from “-” to “++++”, indicating no growth to strong growth.

Fungal infections are problematic for human health and are responsible for high rates of morbidity and mortality worldwide. Species of *Candida* are the dominant cause of opportunistic mycoses and among them, *C. albicans*, *C. glabrata*, *C. parapsilosis*, *C. tropicalis* and *C. krusei* account for 95–97% of all *Candida* infections [1,2]. *C. albicans* and *C. tropicalis* are susceptible to polyenes, flucytosine, azoles and echinocandins, while *C. glabrata* is either susceptible or resistant to fluconazole[3]. Furthermore, *C. krusei* displays decreased susceptibility to amphotericin B, as well as fluconazole. Considering the increasing incidence of drug-resistant *Candida* infections, the search for more effective anti-*Candida* agents as an alternative to synthetic ones is needed. The aqueous extract had minimum or no inhibitory activity against *C. albicans* activity.

Medicinal mushrooms are relatively less researched for their antifungal properties. However, in the last five years, there has been a renewed interest in using mushrooms as antimicrobial agents. *Lentinula edodes* (shitake), *Boletus edulis* (Penny bun), *Pleurotus ostreatus* (oyster mushroom), *Coprinus comatus* (shaggy mane), *Astraeus hygrometricus* (earthstar mushroom), and *Cordyceps militaris* were shown to exhibit antifungal activity against *C. albicans* [5–8]. *Pleurotus giganteus* (Zhudugu, Dabeijun, morning glory mushroom), a saprobiotic mushroom, is one of the largest fruiting bodies tested for its culinary properties. The medicinal properties of this mushroom are less known. We have previously reported the hepatoprotective and neuronal stimulating effects of *P. giganteus* [10,11]. In this study the antifungal activities of different solvent extracts of this mushroom were evaluated. The extracts prepared with different solvents had different profiles of fatty acids, and fatty acids have been shown to demonstrate antimicrobial activities [12].The main metabolites / components in the extracts were analysed by GC-MS. As a preliminary in vitro toxicity assessment, the *P. giganteus* extracts were also investigated for cytotoxicity to mouse embryonic 3T3 fibroblast cells.

The anti-*Candida* activity of methanol, ethyl acetate and aqueous extracts of *P. giganteus* against all yeast species tested are summarised in Table 1. *Candida* species showed strong growth (denoted as “++++”) when extracts were not added to the medium. The aqueous extract had minimum or no inhibitory activity against all *Candida* spp. The ethyl acetate extract completely inhibited the growth of all *Candida* spp. when tested at 50 and 100 µg/mL. Thus, the ethyl acetate extract was fractionated to identify the active component/s responsible for the antifungal activity. Sub-fractions A to H were obtained and the minimum inhibitory concentration (MIC) values against all the tested yeasts are given in Table 2. The MIC values for all the *Candida* spp. tested, ranged from 2.0 ± 1.0 to 10.3 ± 2.5 µg/mL for sub-fraction A; and 9.3 ± 2.3 to 34.3 ± 10.8 µg/mL for sub-fraction B, respectively. The MIC values of...
The methanol, ethyl acetate, and aqueous extracts were not toxic to 3T3 fibroblasts cells and the IC50 values were more than 2 mg/mL. (Fig. 1). Meanwhile, cell viability (%) decreased steadily with increasing concentrations of sub-fr actions A and B at levels up to 100 µg/mL. The sub-fractions A and B were shown to contain several bioactive components. Since they are blends of fatty acids and fatty acid methyl esters, they do not act on specific targets in the fungal cells, and fungal resistance may be unlikely to occur. Furthermore, fatty acids and their methyl esters were reported to have fungicidal activity to C. albicans, C. krusei, C. tropicalis and C. parapsilosis [13]. The entities might play crucial roles in lipophilic or hydrophilic effects on the cell wall and membrane, hence affecting the distribution of the lipids in the cells [14]. Moreover, ergosterol present in the sample could disrupt the ergosterol biosynthesis pathway in the yeast, causing growth inhibition or cell death. This was further supported by a study of Irshad et al. [15], who reported that ergosterol-rich Cassia fistula oil significantly decreased the in vivo ergosterol content in the Candida cell wall.

In this study, the sub-fractions A and B were not cytotoxic to mouse fibroblasts at the concentrations tested (Fig. 1). Animal testing is becoming less popular and is gradually being replaced by in vitro methods for toxicity assessment of pharmaceutical products. In conclusion, P. giganteus lipids are promising natural products to be further explored as antifungal agents against Candida species.

Experimental

Mushroom: The fruiting bodies of *Pleurotus giganteus* (Berk) Karunarathna & K.D. Hyde were obtained from Nas Agro Farm, Selangor, Malaysia. A voucher specimen (KLUM-1227) was deposited in the Herbarium in the University of Malaya.

Chemicals: Fluconazole and amphotericin B were purchased from Sigma Co. (St. Louis, MO, USA). The stocks were prepared in dimethyl sulfoxide (DMSO) prior to bioassays. [3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT), was also obtained from Sigma. Methanol (MeOH), ethyl acetate (EtOAc), n-hexane and acetone were from Merck (Darmstadt, Germany).

Extracts preparation: The fresh fruiting bodies of *P. giganteus* were sliced, freeze-dried and ground to a fine powder (500 g). The mushroom powder was extracted with 80% MeOH to yield a MeOH extract (115 g, 23.0%). This (125 g) was further partitioned in EtOAc-H2O (100 mL: 100 mL) to give an EtOAc-soluble extract (6.96 g, 6.05%) and a H2O extract (74.2 g, 64.5%).

Fractionation of extract: The EtOAc extract (5.00 g) was further fractionated by CC over silica gel. The extract was eluted with n-hexane containing increasing concentrations of acetone to obtain 8 fractions (A to H) based on similarity of spots on TLC.

Table 2: Activity of the sub-fractions of ethyl acetate extracts against Candida species.

<table>
<thead>
<tr>
<th>Candida strains</th>
<th>Sub-fractions from ethyl acetate extract (MIC)</th>
<th>IC50 (mM)</th>
<th>Amphotericin B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Candida albicans WM1172</td>
<td>7.3 ± 16.0 ± 26.6 ±</td>
<td>0.9 ± 10.0 ± 14.0 ±</td>
<td>1.0 ± 14.0 ± 16.0 ±</td>
</tr>
<tr>
<td>Candida albicans ATCC90028</td>
<td>7.0 ± 22.6 ± 40.6 ±</td>
<td>0.9 ± 10.0 ± 14.0 ±</td>
<td>1.0 ± 14.0 ± 16.0 ±</td>
</tr>
<tr>
<td>Candida dubliniensis</td>
<td>3.7 ± 7.0 ± 9.0 ±</td>
<td>0.9 ± 10.0 ± 14.0 ±</td>
<td>1.0 ± 14.0 ± 16.0 ±</td>
</tr>
<tr>
<td>Candida glabrata CBS138</td>
<td>8.1 ± 12.5 ± 28.3 ±</td>
<td>0.9 ± 10.0 ± 14.0 ±</td>
<td>1.0 ± 14.0 ± 16.0 ±</td>
</tr>
<tr>
<td>Candida glabrata ATCC90030</td>
<td>1.5 ± 2.4 ± 6.6 ±</td>
<td>0.9 ± 10.0 ± 14.0 ±</td>
<td>1.0 ± 14.0 ± 16.0 ±</td>
</tr>
<tr>
<td>Candida krusei ATCC658</td>
<td>10.3 ± 37.2 ± 90.0 ±</td>
<td>0.9 ± 10.0 ± 14.0 ±</td>
<td>1.0 ± 14.0 ± 16.0 ±</td>
</tr>
<tr>
<td>Candida pseudotropicalis</td>
<td>3.8 ± 9.4 ± 24.0 ±</td>
<td>0.9 ± 10.0 ± 14.0 ±</td>
<td>1.0 ± 14.0 ± 16.0 ±</td>
</tr>
<tr>
<td>Candida tropicalis WM30</td>
<td>2.0 ± 9.4 ± 24.0 ±</td>
<td>0.9 ± 10.0 ± 14.0 ±</td>
<td>1.0 ± 14.0 ± 16.0 ±</td>
</tr>
</tbody>
</table>

Results were from three independent experiments performed in triplicate. *MIC is expressed in µg/mL.* :

- sub-fraction C varied from 23.0 ± 11.0 to >50 µg/mL; whereas the MIC values for sub-fractions D-H were all >50 µg/mL. Overall, sub-fraction A showed the lowest MIC value for all Candida spp.

- Sub-fractions A and B were further analysed by GC-MS. Both samples were pale yellow-colored oils with a distinct odor. Constituents of sub-fractions A and B are listed in Table 3. Twelve compounds were identified in sub-fractions A and B. Sample A was characterized by high amounts of fatty acid methyl esters, namely: methyl palmitate, ethyl palmitate, methyl linoleate, methyl oleate, methyl stearate, and ethyl oleate. Sample B contained fatty acids (palmitic acid and oleic acid), fatty acid methyl esters (methyl linoleate and methyl oleate), ergosterol, ergost-5,8(14)-dien-3-ol, bet-ergostenol.

Table 3: Chemical composition of lipids in sub-fractions A and B of *P. giganteus*.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>RT (min)</th>
<th>Percentage (%)</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-fraction A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl palmitate</td>
<td>20.50</td>
<td>14.8</td>
<td>99</td>
</tr>
<tr>
<td>Ethyl palmitate</td>
<td>37.12</td>
<td>1.2</td>
<td>98</td>
</tr>
<tr>
<td>Methyl linoleate</td>
<td>23.70</td>
<td>19.8</td>
<td>99</td>
</tr>
<tr>
<td>Methyl oleate</td>
<td>23.80</td>
<td>39.3</td>
<td>99</td>
</tr>
<tr>
<td>Methyl stearate</td>
<td>24.26</td>
<td>3.3</td>
<td>99</td>
</tr>
<tr>
<td>Ethyl oleate</td>
<td>24.99</td>
<td>12.3</td>
<td>99</td>
</tr>
<tr>
<td>Sub-fraction B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl palmitate</td>
<td>20.49</td>
<td>0.2</td>
<td>95</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>23.18</td>
<td>14.4</td>
<td>99</td>
</tr>
<tr>
<td>Methyl linoleate</td>
<td>23.68</td>
<td>0.4</td>
<td>93</td>
</tr>
<tr>
<td>Methyl oleate</td>
<td>23.79</td>
<td>1.0</td>
<td>93</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>24.61</td>
<td>31.7</td>
<td>99</td>
</tr>
<tr>
<td>Ergosta-5,7,9(11),22-tetraen-3β-ol</td>
<td>39.83</td>
<td>2.2</td>
<td>90</td>
</tr>
<tr>
<td>Ergosterol</td>
<td>40.33</td>
<td>24.4</td>
<td>98</td>
</tr>
<tr>
<td>Ergost-5,8(14)-dien-3-ol</td>
<td>40.51</td>
<td>10.2</td>
<td>87</td>
</tr>
<tr>
<td>γ-ergostenol</td>
<td>41.32</td>
<td>3.7</td>
<td>94</td>
</tr>
</tbody>
</table>
Cell culture: Mouse embryonic fibroblasts were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10%, v/v, heat-inactivated fetal bovine serum (PAA), 100 U/mL penicillin and 100 µg/mL streptomycin. The cells were routinely passaged every 2-3 days and incubated at 37°C and 5%, v/v, CO₂ in a humidified atmosphere.

Cytotoxicity: The crude MeOH and fractionated EtOAc extracts were dissolved in DMSO (10 mg/mL) as stock solutions. The H₂O extract (10 mg/mL) was stocked in a sterile, distilled water. The cytotoxic effects of varying concentrations of MeOH, EtOAc and H₂O extracts, as well as the fractions A-H in DMSO to 3T3 fibroblast cells were tested by the established colorimetric MTT assay [16]. The absorbance was measured at 550 nm using a microplate reader. The IC₅₀ is the concentration of extract or fraction that reduced fibroblast cell growth by 50%.

Anti-yeast activity: Candida albicans WM1172, C. albicans ATCC90028, C. dubliniensis, C. glabrata CBS138, C. glabrata ATCC90030, C. krusei ATCC6258, C. pseudotropicalis, and C. tropicalis WM30 were used in these studies. In the yeast inhibition assay, the method was performed according to the method of Macreadie et al. [17]. The yeast strains were grown in YEPD (1% yeast extract, 2% peptone, 2% glucose). If required, media were solidified by the addition of 1.5% agar. Yeast inocula (100 µL) were added to Microlabels, providing initial starting optical density at A₅₉₅ of 0.02-0.04 were added to each well of a 96-well microplate (Orange Scientific, Braine-l’Alleud, Belgium). Mushroom extracts were then added as two-fold serial dilutions commencing with a 100 µg/mL concentration. Fluconazole (0.1 mM) and amphotericin B (1.0 mM) were used as positive controls. A growth control DMSO solvent alone was also included. The microplate was incubated in a microplate shaker at 35°C. After 2 h and 4 h incubation, the A₅₉₅ was recorded using a microplate reader (Sunrise™, Tecan, Austria). Each sample was assayed in triplicate. The lowest concentration of extracts that inhibited growth of *Candida* spp. is the minimum inhibitory concentration (MIC).

Gas chromatography-mass spectrometry (GCMS): GCMS analysis was performed on sub-fractions A and B using Network Gas Chromatography system (Agilent Technologies 6890N) equipped with an Inert Mass Selective Detector (Agilent Technologies 5975) (70eV direct inlet) on a HP-5ms (5% phenyl methyl siloxane) capillary column (30 m x 250 µm x 0.25 µm) initially set at 150°C, then increased at 5°C per min to 300°C and held for 10 min. Helium was used as carrier gas at a flow rate of 1 mL per min. The total ion chromatogram obtained was auto-integrated by chemstation and the constituents were identified by comparison with the accompanying mass-spectra database (Wiley 9th edition with NIST 11 Mass Spectral Library, USA) wherever possible.

Acknowledgments – This research is supported by UM High Impact Research Grant UM-MOHE UMC/625/1HIR/MOHE/ F00002-21001 from the Ministry of Higher Education Malaysia. The authors thank the University of Malaya for Postgraduate Research Grant (PV007/2012A) and MRC 66-02-03-0074. We thank Prof. Andrew T. Smith, Dean of School of Applied Science, RMIT University for partial funding for the joint research.

References:

Rosmarinic Acid Interaction with Planktonic and Biofilm *Staphylococcus aureus*
Lívia Slobodníková, Silvia Fialová, Helena Hupková and Daniel Grančai
1747

New Butenolide and Pentenolide from Dysidea cinerea
Phan Van Kiem, Nguyen Xuan Nhien, Ngo Van Quang, Chau Van Minh, Nguyen Hoai Nam, Nguyen Thi Cec, Hoang Le Tuan Anh, Bui HuuTai, Pham Hai Yen, Nguyen Xuan Cuong, Nguyen Phuong Thao, Nguyen Thi Hoai, Nan Young Kim, Seon Ju Park and Kim Seung Hyun
1751

A New Cyclopeptide from Endophytic Streptomyces sp. YIM 64018
Xueqiong Yang, Yabin Yang, Tianfeng Peng, Fangfang Yang, Hao Zhou, Lixing Zhao, Lihua Xu and Zhongtao Ding
1753

Involvement of Trypsin-Digested Silk Peptides in the Induction of RAW264.7 Macrophage Activation
Kyoung-Ho Pyo, Min-Ki Kim, Kwang-Soon Shin, Hyang Sook Chun and Eun-Hee Shin
1755

Low-Volatile Lipophilic Compounds in Needles, Defoliated Twigs, and Outer Bark of Pinus thunbergii
Alexander V. Shpatov, Sergey A. Popov, Olga I. Salnikova, Ekaterina A. Khokhrina, Emma N. Shmidt and Byung Hun Um
1759

Lipid Constituents of the Edible Mushroom, Pleurotus giganteus Demonstrate Anti-Candida Activity
Chia-Wei Phan, Guan-Serm Lee, Ian G. Macreadie, Sri Nurestri Abd Malek, David Pamela and Vikineswary Sabaratnam
1763

Effect of Trehalose Addition on Volatiles Responsible for Strawberry Aroma
Mirela Kopjar, Janez Hribar, Marjan Simčič, Emil Zlatić, Tomaz Požrl and Vlasta Piližota
1767

Pogostemon hirsutus Oil, Rich in Abietane Diterpenes
Ramar Murugan, Gopal Rao Mallavarapu, Veerappan Sudha and Pemaiah Brindha
1771

Combined Analysis of the Root Bark Oil of Cleistopholis glauca by Chromatographic and Spectroscopic Techniques
Zana A. Ouattara, Jean Brice Boti, Coffy Antoine Ahibo, Félix Tomi, Joseph Casanova and Ange Bighelli
1773

Bioactivities and Compositional Analyses of Cinnamomum Essential Oils from Nepal: C. camphora, C. tamala, and C. glaucescens
Prabodh Satyal, Prajwal Paudel, Ambika Paudel, Noura S. Dosoky, Kiran Kumar Pokharel, and William N. Setzer
1777

Essential Oil Characterization of Two Azorean Cryptomeria japonica Populations and Their Biological Evaluations
Cristina Moiteiro, Teresa Esteves, Luis Ramalho, Rosario Rojas, Sandra Alvarez, Susana Zacchino and Helena Bragança
1785

Antioxidant, Antiproliferative and Antimicrobial Activities of the Volatile Oil from the Wild Pepper Piper capense Used in Cameroon as a Culinary Spice
1791

Review/Account

Boldine and Related Aporphines: From Antioxidant to Antiproliferative Properties
Darina Muthna, Jana Cmielova, Pavel Tomsik and Martina Rezacova
1797

New Therapeutic Potentials of Milk Thistle (Silybum marianum)
Nataša Milić, Nataša Milošević, Ljiljana Suvajdžić, Marija Žarkov and Ludovico Abenavoli
1801

Biomedical Properties of Edible Seaweed in Cancer Therapy and Chemoprevention Trials: A Review
Farideh Namvar, Paridah Md. Tahir, Rosfarizan Mohamad, Mahnaz Mahdavi, Parvin Abedi, Tahereh Fathi Najafi, Heshu Sulaiman Rahman and Mohammad Jawaid
1811

Methods for Extraction and Determination of Phenolic Acids in Medicinal Plants: A Review
Agnieszka Arceusz, Marek Wesolowski and Paweł Konieczynski
1821
Contents

Original Paper

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Humulenes from Hyptis incana (Labiatae)</td>
<td>1665</td>
</tr>
<tr>
<td>Inhibitory Effects against Pasture Weeds in Brazilian Amazonia of Natural Products from the Marine Brown Alga Dictyota mensuralis</td>
<td>1669</td>
</tr>
<tr>
<td>Isolation of the Plant Hormone (+)-Abscisic acid as an Antimycobacterial Constituent of the Medicinal Plant Endophyte Nigrospora sp.</td>
<td>1673</td>
</tr>
<tr>
<td>New Cembranoid Diterpene from the South China Sea Soft Coral Sarcophyton sp.</td>
<td>1675</td>
</tr>
<tr>
<td>Development and Validation of a Modified Ultrasound-Assisted Extraction Method and a HPLC Method for the Quantitative Determination of Two Triterpenic Acids in Hedyotis diffusa</td>
<td>1679</td>
</tr>
<tr>
<td>Minor Triterpene Saponins from Underground Parts of Lysimachia thyrsiflora: Structure elucidation, LC-ESI-MS/MS Quantification, and Biological Activity</td>
<td>1683</td>
</tr>
<tr>
<td>Variation of Saponin Contents and Physiological Status in Quillaja saponaria Under Different Environmental Conditions</td>
<td>1687</td>
</tr>
<tr>
<td>New Access to 7,17-seco C19-Diterpenoid Alkaloids via Vacuum Pyrolysis of N-Deethyl-8-acetyl Derivatives</td>
<td>1691</td>
</tr>
<tr>
<td>Alkaloids from Boophone haemanthoides (Amaryllidaceae)</td>
<td>1695</td>
</tr>
<tr>
<td>Supinidine Viridiflorates from the Roots of Chromolaena pulchella</td>
<td>1703</td>
</tr>
<tr>
<td>Antiangiogenic Activity of Flavonoids from Melia azedarach</td>
<td>1707</td>
</tr>
<tr>
<td>Application of Mixture Analysis to Crude Materials from Natural Resources (IV)[1(a-c)]: Identification of Glycyrrhiza Species by Direct Analysis in Real Time Mass Spectrometry (II)</td>
<td>1711</td>
</tr>
<tr>
<td>Comparison of Total Phenolic Content, Scavenging Activity and HPLC-ESI-MS/MS Profiles of Both Young and Mature Leaves and Stems of Andrographis paniculata</td>
<td>1715</td>
</tr>
<tr>
<td>Xanthones from aerial parts of Hypericum laricifolium Juss.</td>
<td>1719</td>
</tr>
<tr>
<td>A New Xanthone from the Pericarp of Garcinia mangostana</td>
<td>1723</td>
</tr>
<tr>
<td>Isolation of a Phomoxanthone A Derivative, a New Metabolite of Tetrahydroxanthone, from a Phomopsis sp. Isolated from the Mangrove, Rhizophora mucronata</td>
<td>1727</td>
</tr>
<tr>
<td>Antihypertensive Activity of Cyanogenic and Phenolic Glycosides from the Seed of Prunus persica</td>
<td>1731</td>
</tr>
<tr>
<td>Isolation, Synthesis and Biological Evaluation of Phenylpropanoids from the Rhizomes of Alpania galanga</td>
<td>1735</td>
</tr>
</tbody>
</table>

Continued inside backcover